IED (13) - 4013	TED	(15) -	4013
-----------------	-----	--------	------

(REVISION - 2015)

Reg 1	0	
TANK PER T	10	****************
	Photographic in the second sec	
	1.5	
Ciamat		

THIRD SEMESTER DIPLOMA EXAMINATION IN CIVIL ENGINEERING — APRIL, 2017

QUANTITY SURVEYING - I

[Time: 3 hours

(Maximum marks: 100)

[Note: 1. Missing data may be suitably assumed.

2. Drawings attached.]

PART - A

(Maximum marks: 10)

Marks

- I Answer the following questions in one or two sentences. Each question carries 2 marks.
 - 1. List any four duties of quantity surveyor.
 - Reproduce the prismoidal formula for earth work computation.
 - 3. List the unit of measurements for the following items of work.
 - (a) Earth filling in plinth
 - (b) Wood work for door and window
 - (c) Steel reinforcement bars in RCC work
 - (d) Pointing
 - 4. Define sundries.
 - 5. Define out turn of the labour.

 $(5 \times 2 = 10)$

PART - B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Illustrate detailed estimate and relate to abstract of estimated cost.
 - 2. Illustrate centre line method for computing detailed estimate.
 - 3. Show the rules for deduction for openings in internal and external plastering.
 - 4. Compute the quantity of fully glazed window shutters for the given drawing. (fig.1)

- 5. Compute the quantity of materials, stone grit and binder required for first coat of painting for two kilometre length of a bituminous road, 3.75m wide from the following data.
 - Stone grit 20mm gauge @ 1.35 cum/100 sq.m.
 - (ii) Binder road tar No.3 @ 220 kg/100 sq.m.
- 6. Assess the quantity of cement, fine aggregate and coarse aggregate required for an R.C.C. slab over a room of size 3.30m × 4.20m.

Thickness of the slab is 100mm and a projection of 100mm on all sides of the wall.

Mix proportion: $1:1^{\frac{1}{2}}:3$

Materials for 1 cum of concrete

Cement @ 403 kg. Fine aggregate @ 0.42 cum Coarse aggregate @ 0.84cum

7. Illustrate a typical conveyance statement. $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

(a) (i) Summarise the cube rate estimate for building. Ш

(ii) Compute a preliminary estimate for a building project with a total plinth area of all building 1500 sq.m.

Plinth area rate

- Rs. 1000/sq.m.

Water supply and sanitary - 5% of the building cost.

Internal electrification

- 12% of the building cost.

(b) Compute the quantity of earth work for a portion of road from the following data.

Chainage	0	1	2	3	4	5	6	7	8	9
RL	7.50	7.70	7.50	37.25	6.85	6.95	6.70	6.45	6.30	5.95

The formation level at chainage 0 is 8.0 and having falling gradient of 1 in 100. The top width is 12m and side slopes 11/2 horizontal to 1 Vertical assuming the transverse direction is in level calculate the quantity of earth work Take 1 chain = 20m by using trapezoidal formula.

		IVICE	K2
IV	(a)	The plinth are a of an apartment is 500 m ² . Compute the total cost of building from the following data:	
		(i) Rate of construction = Rs. 1230per m^3 .	
		(ii) The height of apartment = 16.25m.	
		iii) Water Supply, Sanitary and Electrical installations each at 6% of building cost.	
		iv) Architectural appearance @ 1% of building cost.	
		(v) Unforeseen item @ 2% of Building cost.	,
		vi) P.S. and contingencies @ 4% of building	7
	(b)	The following are the details of a road embankment. Width of road embankment is 10m. The side slopes are 2:1. The depth along the centre line road at 50m intervals are 1.25, 1.10, 1.50, 1.20, 1.0, 1.10, 1.15m. Compute the quantity of earth work by Mid sectional rule.	8
V	(a)	Assess the quantity of earth work in excavation in foundation in ordinary soil for the given drawing. (fig.1)	7
	(b)	Compute the quantity of brick masonry for super structure in cement mortar 1:6 for the given drawing. (fig.1)	8
VI	(a)	OR Compute the quantity of R.C.C work for roof slab and lintel for the given drawing. (fig.1)	7
	(b)	Compute the quantity of random rubble masonry in cement mortar 1:6 for foundation and basement for the given drawing. (fig.1)	8
		Unit — III	
VII	(a)	Compute the quantity of painting (two coat over a coat of priming) to doors and windows for the given drawing. (fig.1)	. 7
	(b	(i) Compute the quantity of earth work excavation in foundation for a ground level water tank. (fig.2)	4
		(ii) Compute the quantity of cement pointing (inside and out side) walls of the well using cement mortar 1:2 (fig.4).	4
		OR	
VIII	(a	Compute the quantity of white washing to internal and external walls for the given drawing (fig.1)	9
	(t	Assess the quantities of the following items for a state highway for 2 km from the given drawing. (fig.3)	
		(i) Land acquisition (ii) Plantation of grass on the side slopes	6

Unit — IV

- IX (a) Conclude the following:
 - (i) Conveyance charge
 - (ii) Contractors profit
 - (iii) Lump sum item

6

(b) Assess the rate of brick masonry for super structure in 1:6 cement mortar. Unit 1 cum.

Materials

Labour

Country bricks - 500 Nos.

Mason - 1.4 @ Rs. 850/head/day

Cement - 105 kg @ Rs.8,000/ton Men mazdoor - 0.7 @ Rs.750/head/day

Sand - 0.42 cum @ Rs.1,200/cum Women mazdoor - 2.1 @ Rs.700/head/day

Conveyance statement

Sl. No.	Materials	Cost at source Rs.	per	Lead in km	Conveyance charges per km Rs.
1	Brick	9000	1000	18	12
			Nos.		

Add contractors profit 10%.

9

OR

- X (a) Compare cost of material at source and cost of material at site.
 - (b) Assess the rate of Cement Concrete in (1:5:10) Unit 1cum.

Materials

Labour

40mm metal - 0.92 cum

Mason - 0.2 @ Rs.850/head/day

Cement - 0.092 cum

Men mazdoor - 1.8 @ Rs.750/head/day

@ Rs.8000/ton

Sand - 0.46 cum

Women mazdoor - 1.4@ Rs.700/head/day

Conveyance statement

Sl. No.	Materials	Cost at source Rs.	per	Lead in km	Conveyance charges per km , Rs.
1	cement	•••		• # *	•••
2	40mm metal	700	cum	12	12
3	sand	-1000	cum	14	15

1 100