| TED (15) - 2003   |  | Reg. No   | •••• |
|-------------------|--|-----------|------|
| (REVISION – 2015) |  | Signature |      |

# SECOND SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY --- APRIL, 2017

### ENGINEERING PHYSICS - II

[Time: 3 hours

(Maximum marks: 100)

### PART - A

(Maximum marks: 10)

Marks

- I Answer the following questions in one or two sentences. Each question carries 2 marks.
  - 1. Give two examples for centripetal force.
  - 2. What is a polar satellite?
  - 3. Distinguish between resistance and resistivity.
  - 4. State two important characteristics of laser.
  - 5. Distinguish between fission and fusion.

 $(5 \times 2 = 10)$ 

### PART - B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
  - Derive an expression for total kinetic energy of a disc rolling and use this
    formula to calculate the Kinetic energy of disc of mass 2kg and radius 20cm
    rolling with an angular velocity 10 rad/s.
  - 2. A string can sustain a maximum tension of 100N without breaking. A mass of 200g is attached to the end of a string 50cm long. Find the maximum angular velocity at the breaking point. Also find the linear velocity with which the mass will fly off when the string breaks.
  - 3. Calculate orbital velocity of a geostationary satellite.  $(g = 9.8 \text{m/s}^2, R = 6400 \text{ km}, h = 36000 \text{km})$
  - 4. How can a galvanometer be converted to an ammeter? A galvanometer of resistance 100  $\Omega$  gives full scale deflection for 10mA. Calculate the shunt resistance needed to construct an ammeter of range 10A.
  - 5. Two resistances  $1.5\Omega$  and  $1\Omega$  are connected in parallel. The combination is connected to the terminals of a 3 volt cell of negligible internal resistance. Find the effective resistance and the current through each resistors.

6

6

6

3

6

6

3

6

6

- 6. With the help of a neat diagram, explain the working principle of a Helium-Neon laser.
- 7. Radiation of wavelength 300nm falls on a material of work function 2eV. Calculate the maximum velocity of the ejected electrons. Mass of electron is  $9.1 \times 10^{-31}$  kg,  $h = 6.63 \times 10^{-34}$  Js,  $c = 3 \times 10^{8}$ m/s,  $1 \text{ eV} = 1.6 \times 10^{-19}$ J

 $(5 \times 6 = 30)$ 

# PART — C

### (Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

## Unit—I

- III (a) Explain the terms moment of inertia, angular momentum and torque.
  - (b) Derive an expression for the moment of inertia of a uniform circular disc about an axis passing through its centre and perpendicular to its plane.
  - (c) Under the action of a torque, a wheel is making revolutions about its axis with uniform angular acceleration. Starting from rest it attains an angular velocity of 200 rev/s in 5 seconds. Find the angular acceleration and the angle turned during this time.

Or

- IV (a) Define moment of inertia and radius of gyration. Give their units.
  - (b) Explain parallel axes theorem. Calculate the moment of inertia of a uniform disc of mass 2kg and radius 0.5m about a tangent.
  - (c) A circular disc of mas 2kg rotates about its axis at an angular speed 100 rad/s. The radius of the disc is 0.2m. Calculate the moment of inertia, angular momentum and kinetic energy associated with the disc.

#### Unit --- II

- V (a) How can we estimate the mass of the Earth by measuring the value of Gravitational constant?
  - (b) What is meant by geostationary satellites? Derive an expression for the height of a geostationary satellite above the surface of the Earth.
  - (c) An artificial satellite is revolving around the Earth at height of 600km above the surface of the Earth. Find the period of revolution of the satellite.  $(g = 9.8 \text{m/s}^2, R = 6400 \text{km})$

OR

- VI (a) State Newton's law of gravitation and use this to derive an expression for the acceleration due to gravity on the surface of Earth.
  - (b) Derive an expression for the escape velocity. Calculate the escape velocity from the Moon. Mass of Moon is  $7.4 \times 10^{22}$ kg, and radius of the Moon is 1740km,  $G = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$
  - (c) Write an essay on artificial satellites and their applications.

Marks