TED (15) - 6013
(REVISION - 2015)

Reg. No.	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE - APRIL, 2018

STRUCTURAL DESIGN - II

[Time: 3 hours

(Maximum marks: 100)

[Note: Use of IS-800-2007, IS 1905, IS 875- Part 3 and Steel table are permitted.]

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - List any two mechanical properties of steel.

 - List any two mode of failure of a tension member XXII am

 Define the term 'beam'.

 List the loads acting on a roof truss.
 - 4.

 $(5 \times 2 = 10)$

mvgmgPc PART -- B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - List out any six advantages of welded connections.
 - Calculate the shear strength of a 16 mm diameter bolt of grade 4.6 used for a lap joint of 10 mm thick plates of Fe 410.
 - Write the expressions for determine 'design strength of a tension member'.
 - Due to yielding of gross section.
 - (b) Due to rupture.
 - Define the following terms of a compression member.
 - Actual length
- (b) Effective length
- (c) Slenderness ratio.
- 5. An ISWB 400 @ 667N/m carries maximum shear force 100 KN, check the safety of the beam in shear, with fy = 250 MPa.
- (a) Write the situations under which "plate girders" are used.
 - (b) Write any six component parts of a plate girder.
- Write short notes on 'Effective height' and 'Effective length' of wall.

 $(5 \times 6 = 30)$

PART - C

(Maximum marks: 60)

	(A	nswer one full question from each unit. Each full question carries 15 marks.)	
		Unit — I	
m	(a)	List out any four advantages and three disadvantages of steel structures.	7
	1. Ann 2. (c)	Calculate the safe load transmitted by a shop welded joint, if the size of	8
		OR	
IV	(a)	Explain the Design Philosophy of steel structures.	7
	(b)	Find the strength of a lap joint of Fe 415 steel plates of width 250 mm, thickness 20 mm connected by means of 3 numbers 20mm dia bolts of 4.6 grade at a spacing of 50 mm.	8
		Unit — II	
v	(a)	Explain the use of Lug angle and it's any four specifications as per IS 800.	7
	(b)	A single angle ISA 9060, 6 mm thick is connected to a gusset plate of 10 mm thick by fillet weld of 4 mm size. Given fy = 250N/mm ² , fu = 410 N/mm ² and length of weld is 200 mm. Determine tensile strength in yielding and rupture.	8
		OR	
VI	(a)	Design a single angle strut connected to gusset plate carry a factored load of 200 KN. The length of member is 3 mr fy = 250 MPa.	7
'NIT	(b)	Explain the procedure for determination of 'design strength' of a single angle tension member. UNIT — III	8
VII	(a)	Explain plastic moment carrying capacity of a beam section.	7
	10000	Determine the design bending moment of a laterally supported beam ISMB 350@524N/m, fy = 250 MPa.	8
		OR	
VIII	(a)	Write short notes on classifications of beam section.	7
	(b)	An ISMB 500@869N/m carries a uniformly distributed load over an effective span of 6.50m. If the beam is restrained laterally, what udl the beam can carry, considering bending condition only, take fy = 250 N/mm ² .	8
		. Unit — IV	
IX	(a)	List any seven component parts of a roof truss.	7
	2 5207	A masonry wall carrying an axial load of 10KN/m is of 3.30 m effective length. It is not braced by cross walls. The effective height of wall is 3.0m. Design the masonry wall. Given fb = 0.50 N/mm ² , Ka = 1, Ks = 0.84, Kp =1.20.	8
		O _R	
Х	(a)	Write the design considerations of a masonry wall.	7
Total Control		A roof truss shed is to be built in Lucknow for an industry. The size of shed is $24 \text{ m} \times 40 \text{ m}$. The height of building is 12m at the eves. Determine the basic wind pressure, Given basic wind pressure at Lucknow = 47 m/sec .	8