TED (15) – 1002

(REVISION --- 2015)

Reg. No.

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

ENGINEERING MATHEMATICS - I

[*Time* : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

 $(5 \times 2 = 10)$

- I Answer all questions. Each question carries 2 marks.
 - 1. Find the value of $\tan^2 60 + \tan^2 45$.
 - 2. If $\tan \theta = 3$, find $\sin 2\theta$.
 - 3. Find the area of a triangle given, b = 3 cm, c = 2 cm and $A = 30^{\circ}$.
 - 4. Evaluate $\lim_{x \to 3} \frac{x^2 + 9}{x + 3}$
 - 5. For what values of x, the function $x^2 5x + 6$ is increasing ?

PART — B

(Maximum marks : 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Find the value of tan 75, without using tables and show that tan $75 + \cot 75 = 4$.
 - 2. The horizontal distance between two towers is 60 m and the angle of depression of the first tower as seen from the second which is in 150 m height is 30°. Find the height of the first tower.
 - 3. Prove that $\cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{7\pi}{8} = 0$
 - 4. Solve $\triangle ABC$, given a = 4cm, b = 5cm, c = 7cm.
 - 5. Find the second derivative of $x^2 \log x$.
 - 6. Differentiate 'sin x' by the method of first principles.
 - 7. If S denotes the displacement of a particle at the time 't' seconds and $S = t^3 - 6t^2 + 8t - 4$.
 - (i) Find the time when the acceleration is 12 cm/sec^2 .
 - (ii) The velocity at that time.

 $(5 \times 6 = 30)$

PART - C

(Maximum marks : 60)

(Answer one full question from each unit. Each full guestion carries 15 marks.)

III (a)	Prove that	$\frac{\csc\theta}{\csc\theta - 1}$	+	$\frac{\csc\theta}{\csc\theta + 1}$	$= 2 \sec^2 \theta$		4
---------	------------	-------------------------------------	---	-------------------------------------	---------------------	--	---

- (b) If $\tan A = 3/4$, $\sin B = 5/13$. (A lies in the third quadrant and B lies in the second quadrant.) Find $\sin (A-B)$ and $\cos (A+B)$.
- (c) Evaluate $\cos 570 \sin 510 \sin 330 \cos 390$.

Or

IV (a) Prove that
$$\frac{1 + \sin A}{\cos A} = \frac{\cos A}{1 - \sin A}$$

- (b) Express $\sqrt{3} \sin x + \cos x$ in the form of R sin $(x + \alpha)$ where α is acute.
- (c) Prove that $\sin (A + B) \sin (A B) = \sin^2 A \sin^2 B$.
 - Unit II

V (a) Prove that
$$\frac{\sin 3A - \sin A}{\cos 3A + \cos A} = \tan A$$

(b) Prove that $\cos 80 \cos 60 \cos 40 \cos 20 = 1/16$
5

(c) Show that a $(b^2 + c^2) \cos A + b (c^2 + a^2) \cos B + c (a^2 + b^2) \cos C = 3abc$

Or

- VI (a) Prove that $\frac{\cot A \tan A}{\cot A + \tan A} = \cos 2A$ (b) Show that $\sin 40 - \sin 80 + \sin 20 = 0$ 5
 - (c) Two angles of a triangular plot of land are 53° and 67° and the side between
 - them is measured to be 100cm. How many meters of fencing is required to fence the plot?

/II (a) Evaluate (i)
$$\lim_{x \to \infty} \frac{3x+5}{x-2}$$
 (ii) Evaluate $\lim_{x \to 3} \frac{x^2-9}{x-3}$ (3 + 2)

(b) Find
$$\frac{dy}{dx}$$
 if (i) $x = at^2$, $y = 2at$.
(ii) $y = \frac{\sin 2x}{1 + \cos 2x}$ (3 + 2)

(c) If y = a sin x + b cos x. Prove that
$$\frac{d^2y}{dx^2} + y = 0$$

5

5

5

5

5

5

5

5

Or

			Marks			
VIII	(a)	Find the derivative of 'sec x' using quotient rule.	5			
	(b)	Find $\frac{dy}{dx}$ if (i) $y = \log(\sin \sqrt{x})$ (ii) $y = (x^3 + 3) \tan^{-1} x$	(3+2)			
	(c)	If $ax^2 + by^2 + 2gx + 2fy + c = 0$, find $\frac{dy}{dx}$	5			
		- Unit — IV				
IX	(a)	Find the equation to the tangent and normal to the curve $y = x^2 + 2x - 3at$ (2,5).	5			
	(b)	A circular plate of radius 3 inches expands when heated at the rate of 2 inches/second. Find the rate at which the area of the plate is increasing at the end of 3 seconds.				
	(c) [.]	The deflection of a beam is given by $y = 2x^3 - 9x^2 + 12x$. Find the maximum deflection.	5			
		Or				
X	(a)	Find the values of 'x' for which the tangent to the curve $y = x$				
		will be parallel to the x – axis. $(1 - x)^2$	5			
	(b)	A balloon is spherical in shape. Gas is escaping from it at the rate of 10 cc/sec. How fast is the surface area shrinking when the radius is 15 cm ?	5			
	(c)	The perimeter of a rectangle is 100 m. Find the sides when the area is				
		maximum.	5			