TED	(15)	-2004

(REVISION — 2015)

Reg. No.	 	
Cianatura		

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

ENGINEERING CHEMISTRY - II

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Bohr's orbits are also known as stationary states. Why?
 - 2. Write two examples each for weak electrolytes and non-electrolytes.
 - 3. List any two advantages of optical fibres.
 - 4. How can we reduce the rate of global warming of atmosphere?
 - 5. Define the terms Pollution and Pollutant.

 $(5 \times 2 = 10)$

PART -

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. (a) Explain the concept of quantum numbers needed to specify an electron in an atom.
 - (b) Sodium chloride is a bad conductor in the solid state. Why? (4+2=6)
 - 2. (a) What are the factors which favour rusting of iron?
 - (b) What is a secondary cell? Give two examples. (4+2=6)
 - 3. (a) Bakelite & PVC are two commonly used polymers. Write the monomers of the polymers and any two uses of the polymers.
 - (b) What is catenation? Give two elements which show maximum catenation. (4+2=6)
 - 4. (a) What is cracking? Write two advantages of catalytic cracking.
 - (b) Write two harmful effects of acid rain. (4+2=6)
 - 5. (a) What are multiple covalent bonds? Give two examples.
 - (b) Which orbital is non directional? (4+2=6)

	6.	(a) Define the following terms:	
		(i) Functional group (ii) Isomerism	
		(b) List two techniques used in green chemistry to minimize pollution.	
		(4 +2 =	= 6)
	7.	(a) What are fuel cells? Write two advantages of fuel cells.	
		(b) Can we store Copper Sulphate solution in a Zinc vessel. Give suitable explanation. $(4+2)$	= 6)
			0)
		PART — C	
		(Maximum marks : 60)	
	(A	Answer <i>one</i> full question from each unit. Each full question carries 15 marks.)	
		Unit — I	
		\ \frac{1}{0}	
II	(a)	Write the de Broglie relation for a material particle. Calculate the de Broglie wavelength for an electron moving with a velocity of 10 ms ⁻¹ .	
		$(h = 6.625 \times 10^{-34} \text{kgm}^2 \text{s}^{-1}, m = 9.1 \times 10^{-31} \text{kg})$	5
	(b)	State Hund's rule of maximum multiplicity. Mustrate it using two examples.	5
	(c)	List three merits and two demerits of Bohr model of atom.	5
		1 Or	
V	(a)	State Aufbau principle. Write the electronic configuration of	
	(-)	Na (Z - 11) and K(Z 19)	5
	(b)	Define an orbital. Draw the shape of s, px, py, and pz orbital.	5
	(c)	What are the main postulates of Bohr's theory of atoms?	. 5
		10	
		Unit.— II	
* 7			
V	(a)	Distinguish between electronic and electrolytic conduction.	5
	(b)	A galvanic cell reaction is given below.	
		$Zn_{(s)} + Ni^{2+}(aq) \rightarrow Zn^{2+}(aq) + Ni(s)$	
		Write the cell notation, reactions at the electrodes and compute e. m. f.	
		(Given E^0 $Ni^{2+}/Ni = -0.25V$, E^0 $Zn^{2+}/Zn = -0.76V$)	5
	(c)	What is corrosion? How are underground iron pipes protected from	
		corrosion ?	5
		OR	
Л	(a)	Write any five applications of electrolysis.	5
	(b)	Distinguish between electrolytic cell and galvanic cell.	5
	(c)	Explain electrochemical theory of corrosion.	5

		Unit — III	Marks
VII	(a)	Distinguish between organic and inorganic compounds.	5
	(b)	What are refractories? How are they classified? Give one example for each.	. 5
	(c)	State the significance of the numbers in the polymer names - Nylon 6:6 and Nylon 6. Write the monomers of Nylon 6:6 and Nylon 6.	5
		OR	
VIII	(a)	Distinguish between saturated and unsaturated compounds with one example for each.	5
	(b)	Write the monomer present in natural rubber. How will you make natural rubber hard? Write two advantages of this process.	5
	(c)	Describe the uniqueness of Carbon atom. UNIT — IV What are the qualities of a good fuel? Explain the following:	5
		Unit — IV	
IX	(a)	What are the qualities of a good fuel?	5
	(b)	Explain the following: (i) Green House Effect (ii) Acid Rain	5
	(c)	What is green chemistry? Mention three principles of green chemistry.	5
		OR	
X	(a)	Define calorific value of a fuel. What do you mean by gross and net calorific values?	5
	(b)	Write the constituents of Natural gas and Gobar gas and mention any two uses of Natural gas.	5
	(c)	How are fuels classified based on the physical state? Compare them.	. 5